Effects of trimethylamine N-oxide (TMAO) and crowding agents on the stability of RNA hairpins.

نویسندگان

  • David L Pincus
  • Changbong Hyeon
  • D Thirumalai
چکیده

We study the effect of the osmolyte, Trimethylamine N-Oxide (TMAO), which accumulates in cells in response to osmotic stress, on the stability of RNA hairpins. All atom molecular dynamics (MD) simulations of a nucleotide and the 22-nucleotide RNA hairpin P5GA in an aqueous TMAO solution show that TMAO preferentially interacts with the base through the formation of a single hydrogen bond. To circumvent the difficulties of adequately sampling the conformational space of polynucleotides, we used coarse-grained models (including one that is inspired by the results of all-atom MD simulations of a single nucleotide) to probe the effects of osmoyltes on the stability of P5GA. If, as revealed by our MD simulations, the cosolute specifically interacts with only one base at a time, then we find practically no change in hairpin stability as measured by Delta T m = T m(Phi) - T m, where T m(Phi) and T m are the melting temperatures at volume fraction Phi of the osmolyte and Phi = 0, respectively. This finding is in qualitative agreement with recent experiments. If the interactions between the RNA and osmolytes are repulsive, which is appropriate for mimicking the effects of crowding, Delta T m can vary from 5 to 15 K depending on the size of the osmolyte and the nature of RNA-osmolyte interactions. Cosolutes that interact favorably with multiple bases simultaneously can stabilize the hairpin more than a crowding agent of the same size. The implications of our predictions for experiments are briefly outlined.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Is There any Possible Association Between Trimethylamine N-Oxide (TMAO) and Cancer? A Review Study

Background: During the transit of digested animal source foods, gut microbiota synthesize metabolites that can affect the body cells. One of these metabolites, i.e. Trimethylamine (TMA) that is an intermediary metabolite, ultimately leads to the production of Trimethylamine N-oxide (TMAO). Several studies have been conducted to show the association between TMAO and different diseases. This arti...

متن کامل

Investigation of the effect of trimethylamine-N-oxide on the proinflammatory cytokine genes expression in U937-derived macrophages

Background and Aim: Atherosclerosis is known as a multifactorial inflammatory disease. Trimethylamine N-oxide (TMAO) as a risk factor, has a potential to trigger or enhance the immune inflammatory reactions in atherosclerosis. Yet, The exact mechanism by which TMAO induces inflammation during atherosclerosis is not well understood. The present study was designed to evaluate the expression of IL...

متن کامل

Effects of trimethylamine N-oxide and urea on DNA duplex and G-quadruplex

We systematically investigated effects of molecular crowding with trimethylamine N-oxide (TMAO) as a zwitterionic and protective osmolyte and urea as a nonionic denaturing osmolyte on conformation and thermodynamics of the canonical DNA duplex and the non-canonical DNA G-quadruplex. It was found that TMAO and urea stabilized and destabilized, respectively, the G-quadruplex. On the other hand, t...

متن کامل

Restored mutant receptor:Corticoid binding in chaperone complexes by trimethylamine N-oxide

Without a glucocorticoid (GC) ligand, the transcription factor glucocorticoid receptor (GR) is largely cytoplasmic, with its GC-binding domain held in high affinity conformation by a cluster of chaperones. Binding a GC causes serial dis- and re-associations with chaperones, translocation of the GR to the nucleus, where it binds to DNA sites and associates with coregulatory proteins and basic tr...

متن کامل

Protonation of trimethylamine N-oxide (TMAO) is required for stabilization of RNA tertiary structure.

The osmolyte trimethylamine N-oxide (TMAO) stabilizes the tertiary but not the secondary structures of RNA. However, molecular dynamics simulations performed on the PreQ1 riboswitch showed that TMAO destabilizes the tertiary riboswitch structure, leading us to hypothesize that the presence of RNA could result in enhanced population of the protonated form, TMAOP. Constant pH replica exchange sim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 130 23  شماره 

صفحات  -

تاریخ انتشار 2008